Exercise 12- Nuclear Reactions

Past Paper Homework Questions

 The statement below represents a nuclear reaction.

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{92}_{36}$ Kr + $^{141}_{56}$ Ba + $^{1}_{0}$ n + $^{1}_{0}$ n + $^{1}_{0}$ n

This is an example of

- A nuclear fusion
- B alpha particle emission
- C beta particle emission
- D spontaneous nuclear fission
- E induced nuclear fission.
- Which row of the table shows the correct values of x, y and z for the nuclear reaction described below?

$${}^{214}_x\text{Pb} \rightarrow {}^y_{83}\text{Bi} + {}^0_z\text{e}$$

	x	У	z
A	84	214	1
В	83	210	4
C	85	214	2
D	82	214	-1
Е	82	210	-1

 Under certain conditions, a nucleus of nitrogen absorbs an alpha particle to form the nucleus of another element and releases a single particle.

Which one of the following statements correctly describes this process?

A
$${}^{14}_{7}N + {}^{3}_{2}He \rightarrow {}^{16}_{9}F + {}^{1}_{0}n$$

B
$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{10}Ne + {}^{0}_{-1}e$$

$$C = {}^{14}_{7}N + {}^{3}_{2}He \rightarrow {}^{16}_{8}O + {}^{1}_{1}p$$

D
$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{18}_{9}F + 2 {}^{0}_{-1}e$$

E
$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}p$$

- 4. Which of the following statements describes nuclear fission?
 - A A nucleus of large mass number splits into two nuclei, releasing several neutrons.
 - B A nucleus of large mass number splits into two nuclei, releasing several electrons.
 - C A nucleus of large mass number splits into two nuclei, releasing several protons.
 - D Two nuclei combine to form one nucleus, releasing several electrons.
 - E Two nuclei combine to form one nucleus, releasing several neutrons.

A series of radioactive decays starts from the isotope Uranium 238.

> Two alpha particles and two beta particles are emitted during the decays.

> Which row in the table gives the mass number and the atomic number of the resulting nucleus?

	Mass number	Atomic number
A	232	88
В	230	86
C	230	90
D	246	94
E	246	98

The following statement describes a fusion reaction.

$${}_{1}^{2}H + {}_{1}^{2}H \longrightarrow {}_{2}^{3}He + {}_{0}^{1}n + energy$$

The total mass of the particles before the reaction is 6.684×10^{-27} kg.

The total mass of the particles after the reaction is 6.680×10^{-27} kg.

The energy released in this reaction is

A
$$6.012 \times 10^{-10} \text{ J}$$

B
$$6.016 \times 10^{-10} \text{ J}$$

C
$$1.800 \times 10^{-13} \text{ J}$$

D
$$3.600 \times 10^{-13} \text{ J}$$

E
$$1.200 \times 10^{-21}$$
 J.

- Compared with a proton, an alpha particle has
 - A twice the mass and twice the charge
 - B twice the mass and the same charge
 - C four times the mass and twice the charge
 - D four times the mass and the same charge
 - E twice the mass and four times the charge.
 - 8. For the nuclear decay shown, which row of the table gives the correct values of x, y and z?

$${}^{214}_{x}$$
Pb $\longrightarrow {}^{y}_{83}$ Bi + ${}^{0}_{z}$ e

	x	У	22
A	85	214	2
В	84	214	1
C	83	210	4
D	82	214	-1
E	82	210	-1

Radium (Ra) decays to radon (Rn) by the emission of an alpha particle.
 Some energy is also released by this decay.

The decay is represented by the statement shown below.

$$\frac{226}{88}$$
Ra $\longrightarrow x$ Rn + $\frac{4}{2}$ He

The masses of the nuclides involved are as follows.

Mass of
$$\frac{226}{88}$$
Ra = 3.75428×10^{-25} kg

Mass of
$${}^{x}_{y}$$
Rn = 3.68771 × 10⁻²⁵ kg

Mass of
$${}^{4}_{2}$$
He = 6.64832×10^{-27} kg

- (a) (i) What are the values of x and y for the nuclide ${}^{x}_{y}$ Rn?
 - (ii) Why is energy released by this decay?
 - (iii) Calculate the energy released by one decay of this type.
- (b) The alpha particle leaves the radium nucleus with a speed of 1.5 x 10⁷ m s⁻¹. The alpha particle is now accelerated through a potential difference of 25 kV.

5

3

3

Calculate the final kinetic energy, in joules, of the alpha particle.

10. (a) The following statement represents a nuclear reaction.

$$\frac{239}{94}$$
Pu + $\frac{1}{0}$ n $\longrightarrow \frac{137}{52}$ Te + $\frac{100}{42}$ Mo + $3\frac{1}{0}$ n + energy

The total mass of the particles before the reaction is $3.9842 \times 10^{-27} \text{kg}$ and the total mass of the particles after the reaction is $3.9825 \times 10^{-27} \text{kg}$.

- (i) State and explain whether this reaction is spontaneous or induced.
- (ii) Calculate the energy, in joules, released by this reaction.

11. (a) Torbernite is a mineral which contains uranium.

The activity of $1.0 \,\mathrm{kg}$ of pure torbernite is 5.9×10^6 decays per second.

A sample of material of mass 0.6 kg contains 40% torbernite. The remaining 60% of the material is not radioactive.

What is the activity of the sample in becquerels?

2

- 12. A technician is studying samples of radioactive substances.
 - (a) The following statement describes a nuclear decay in one of the samples used by the technician.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

- (i) What type of particle is emitted during this decay?
- (ii) In this sample 7·2 × 10⁵ nuclei decay in two minutes.
 Calculate the average activity of the sample during this time.

3

13. A ship is powered by a nuclear reactor.

One reaction that takes place in the core of the nuclear reactor is represented by the statement below.

$${}^{235}_{92}\,\mathrm{U} \ + {}^{1}_{0}\,\mathrm{n} \ \to \ {}^{140}_{58}\mathrm{Ce} \ + \ {}^{94}_{40}\mathrm{Zr} \ + \ {}^{1}_{0}\mathrm{n} \ + \ {}^{0}_{-1}\mathrm{e}$$

(a) The symbol for the Uranium nucleus is $\frac{235}{92}$ U.

What information about the nucleus is provided by the following numbers?

- (i) 92
- (ii) 235

2

(b) Describe how neutrons produced during the reaction can cause further nuclear reactions.

1

(c) The masses of particles involved in the reaction are shown in the table.

Particles	Mass/kg
²³⁵ ₉₂ U	390·173 × 10 ⁻²⁷
¹⁴⁰ ₅₈ Ce	$232 \cdot 242 \times 10^{-27}$
94 40 Zr	155.884×10^{-27}
1 0 n	1.675×10^{-27}
0 -1 e	negligible

Calculate the energy released in the reaction.